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a b s t r a c t

The state-of-charge (SOC) of batteries and battery–supercapacitor hybrid systems is predicted using
artificial neural networks (ANNs). Our technique is able to predict the SOC of energy storage devices based
on a short initial segment (less than 4% of the average lifetime) of the discharge curve. The prediction
shows good performance with a correlation coefficient above 0.95. We are able to improve the prediction
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further by considering readily available measurements of the device and usage. The prediction is further
shown to be resilient to changes in operating conditions or physical structure of the devices.
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. Introduction

There is a pressing need in energy storage to meet the ever
ncreasing demands for sustainable energy. Batteries, supercapac-
tors, and their hybrid combination are all significant contributing
echnologies. Hybrid systems containing a battery and a superca-
acitor have been experimentally demonstrated to exhibit longer
perating times when compared to systems with batteries alone
nder repetitive high load and high current pulse conditions [1–7].

Electrochemical capacitors (supercapacitors) offer high power
ensity when compared to battery systems and also have a rela-
ively large energy density compared to conventional capacitors
8–11]. Batteries, such as lithium ion batteries, have a high energy
ensity of about 105 J kg−1. Their power density, however, is low –
round 100 W kg−1. As a result, conventional batteries cannot meet
igh power demands when discharged at high currents [10,11].
ombining a supercapacitor in parallel with a battery into a hybrid
ystem broadens the applicability of batteries to higher discharge
ates due to the high power density of supercapacitors [1,6,7].
uch hybrid energy storage devices are more efficient than a bat-
ery in supplying the total power for use in digital cellular phones,

pace communications, power distribution systems, uninterrupted
ower supplies, electric and hybrid vehicles, portable computers,
nd military applications [7]. In many of these applications, the
oads are not constant but rather span a range of power levels.

∗ Corresponding author. Tel.: +1 573 578 8837; fax: +1 847 327 3896.
E-mail address: weigert@mst.edu (T. Weigert).

378-7753/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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Coupling supercapacitors with batteries is more beneficial under
pulsed power loads, which are frequently encountered in commu-
nication systems [1].

Being able to predict the lifetime of a power storage device is
of immense technical and commercial importance when planning
power systems, selecting the most suitable batteries, determining
the operating conditions, and planning replacement intervals for
batteries [12]. Important questions are how long will a battery
of a specific type and manufacturer last under certain operating
conditions, and how will the lifetime be affected if the operating
conditions are changed?

The lifetime of a battery is the result of the ageing processes
ongoing within the battery. These ageing processes are irreversible
changes in the components of a battery, in the materials used, or in
the properties of the battery [12]. The ageing processes can be seen
as being induced or furthered by stress factors, such as a battery
remaining at low states of charge a long time, the charge factor,
the time delay between full charges, or the operating temperature.
Battery life prediction typically attempts to develop quantitative
models capturing the relationship between stress factors and age-
ing processes. Operating conditions, user requirements, operating
regimes, and battery design often lead to a combination of stress
factors. Consequentially, multiple ageing processes must be con-
sidered simultaneously, in particular, as these multiple ageing

processes may interact and interfere with each other. Because the
effects of ageing involve the entire system and not just the bat-
tery cell, it is even more difficult to predict the lifetime of hybrid
energy storage systems. Wenzl et al. categorized battery life mod-
els into models that reflect the impact of ageing on performance

dx.doi.org/10.1016/j.jpowsour.2010.10.075
http://www.sciencedirect.com/science/journal/03787753
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Fig. 1. Schematic depiction of a single neuron (processing element) of an ANN.
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neuron in the output layer which represents the predicted num-
he weighted inputs and the bias are summed (Wp + b), and a transfer function f
s applied to the result, yielding the output of the neuron.

nd models that link the lifetime to a measurable parameter [12].
owever, many of the published models have not been validated
xperimentally.

In contrast, rather than deriving such models from physi-
al relationships, estimation techniques attempt to infer a set
f parameters that will minimize the sum-of-squared-differences
etween the observed behavior (target) and the model-generated
utput. Artificial neural networks (ANNs) are an effective esti-
ation technique to approximate the parameters for complex,

on-linear behaviors described by a combination of functions of
he form a = f(Wp + b), where p is a vector of inputs, W is a vec-
or of weights, b is a bias which is summed with the weighted
nputs, and f is the transfer function applied. By combining such
unctions in series (linking the output of one function to the input
f another), or in parallel (by applying an input to a set of such
unctions concurrently), or both, one can approximate arbitrarily
omplex non-linear functions. An ANN estimates the values of the
eight parameters in these functions so that, given its input, the

ombined set of functions yields the desired output.
An ANN is composed of a set of processing elements, referred

o as neurons. Each neuron corresponds to a function from one or
ore inputs to a single output, as described above (see Fig. 1). A

umber of neurons may be arranged in parallel into a layer, and
uch layers may be arranged sequentially, such that each output of
neuron of a given layer is connected as input to each neuron in

he subsequent layers (for more complex systems there may also
e back links between layers). The neurons of an ANN are therefore
rouped into an input layer, zero or more hidden layers, and an
utput layer. Each input to the ANN is processed by a neuron in the
nput layer, each output is processed by a neuron in the output layer,
nd an arbitrary number of additional neurons may be inserted
n hidden layers. There is no physical meaning to the neurons in
he network, to the connections between the individual neurons,
r to the arrangement of the network into layers. Similar to other
stimation techniques, to avoid developing a system that works
ell for the training data but is not able to estimate new data, the

implest network that performs adequately should be constructed.
Through a training process, the weights and biases in the indi-

idual neurons are iteratively adjusted so that the overall network
inimizes the sum-of-squared-differences between predicted out-

uts and observed outputs given a known set of training data.
hen training the ANN, an input vector and the observed output

or that input vector are presented to the network, and the train-
ng algorithm adjusts the weights and biases of the network in the

irection of the negative gradient, that is, in the direction where
he mean squared error function decreases. A number of algorithms
ave been developed to perform this adjustment efficiently while
voiding being trapped in local minima.
ources 196 (2011) 4061–4066

Since ANNs can discover relationships between inputs and
outputs of a system without a detailed understanding of the mecha-
nisms involved, they can be effectively applied to estimate models
for systems where such relationships are not clearly understood.
Macdonald et al. studied the effect of temperature and running his-
tory (current, time step, time from start of test, ampere–hours, etc.)
of a battery on its output voltage [13]. Gorman et al. utilized ANNs
to simulate a single-load, constant discharge curve [14]. Grewal
et al. investigated the effects of pulse current loads on the discharge
time of a Li-ion battery and used a three-layer, feed-forward ANN
to successfully simulate the state of discharge of the battery [15].
Kozlowski et al. predicted the remaining charge based on measure-
ments (surface and internal temperatures, electrolyte pH, terminal
and cell voltages, and electrical impedances) of the device obtained
after an initial run. Impedance models provided additional infor-
mation regarding the electrochemical processes occurring within
the battery to the ANN [16]. Lee et al. used an ANN augmented
with fuzzy reasoning and genetic algorithms to predict the state-
of-charge of secondary batteries [17]. Farsi and Gobal used ANNs
to predict supercapacitor performance, such as current densities,
energy densities, and power densities, with good correspondence
between predictions and the numerical model [18]. Parthiban et al.
used ANNs to predict the shape of the curve of remaining capacity
over 50 charge/discharge cycles under various experimental setups
[19].

The lifetime of energy storage systems may refer to either the
state-of-charge of the system (that is, how much usable capacity
remains) or its state-of-life (that is, how many charge-discharge
cycles remain). In this paper, we present an effective technique
based on ANNs to predict the SOC of energy storage systems, both
for batteries and for hybrid systems comprised of batteries and
supercapacitors. By “lifetime” we therefore refer to a measure of
time until the capacity of the system drops below a usable level in
response to the application of a discharge pattern.

2. Experimental

The batteries used in these experiments were commercial alka-
line primary batteries with a rated capacity of 1000 mAh. The
supercapacitors (Taiyo Yuden, purchased from Digi-Key Co.) had a
rated capacitance of 2 F, voltage of 2.3 V, and equivalent series resis-
tance (ESR) of 50 m�. The ESR of batteries and supercapacitors was
measured on a Solartron 1255 frequency response analyzer inter-
faced with an EG&G 263A. For the battery–supercapacitor hybrid
system, each battery was connected to a supercapacitor in paral-
lel. The batteries and hybrid systems were discharged on a Maccor
battery test system. A high current pulse discharge was applied
(from 1.5 A to 2.5 A). The pulse width of the current was fixed
at 0.5 s. The duty ratio was set at either 0.17 or 0.25. The cut-off
voltage was set at 1 V. We conducted three experiments, using dif-
ferent sets of primary batteries, with the pulse discharge load set
at 1.5 A, 2 A, or 2.5 A, respectively. All tests were conducted under
ambient conditions. In all experiments, we used both batteries
and battery–supercapacitor hybrids together. We relied on primary
batteries instead of secondary batteries in order to eliminate the
impact of charging history and charging profile on lifetime.

We constructed an ANN to predict, based on inputs character-
izing the device and its operating conditions, the number of pulse
cycles before the voltage of the device drops below the cut-off volt-
age. We used a three-layer, feed-forward ANN comprised of an
input layer with a neuron per input, a hidden layer, and a single
ber of pulse cycles. The number of neurons in the hidden layer was
selected based on the number of input neurons, following the rule
of thumb to set the size of the hidden layer to roughly twice the
size of the input layer.
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up the ANN with 20 input neurons, reflecting the voltage at the
5th, 10th, 15th, up to the 100th pulse cycle. We experimented with
various configurations of hidden neurons, from 1.5 to 2.5 times the
number of input neurons. The single output neuron yielded the
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ig. 2. Observed variation in lifetime: minimum, maximum, and average number o
raph of lifetime for various devices (right).

For training the ANN, we used the Levenberg–Marquardt back-
ropagation algorithm, which is an efficient implementation of
quasi-Newton method to estimate the network parameters. In

rder to improve generalization of the network and to avoid
vertraining, we relied on the early stopping technique: A set of val-
dation data is monitored during training. Initially, both the error
n the training data and the error in the validation data decrease.

hen the network begins to overfit the data, the validation error
ncreases. At this point, training is stopped.

In all our experiments, we divided the available data into three
istinct data sets: training data, validation data, and test data. The
etwork was trained with the training data, and the validation data
as used to determine when to stop training. The trained net-
ork was then evaluated using the test data. Each experiment was

omprised of a (large) number of runs, for various network con-
gurations. As parameter estimation through ANNs is a stochastic
rocess, in each run the network was trained and evaluated 100
imes, and the average result was chosen. In this way, we avoided
ainting the finally obtained results caused by accidentally good or
ad performance on specific samples.

. Results and discussion

A large variation in the measured lifetime for tested batteries
nd battery–supercapacitor hybrids, expressed as the number of
ulse cycles before the voltage dropped below the cut-off voltage,
as observed. Fig. 2 shows the range of minimum and maximum

ifetime for the three experiments conducted at 1.5 A, 2.0 A, and
.5 A, for batteries and hybrid systems, along with the mean and
tandard deviation for each experiment. For example, the first line
hows that for the experiment involving a battery–supercapacitor
ybrid with a current of 1.5 A applied, the observed life ranged from
084 to 3315 pulse cycles, with a mean life of 2104 pulse cycles at
standard deviation of 529 pulse cycles. The graph on the right

hows the distribution of the measured lifetime of the indicated
evices. As Fig. 2 shows, a hybrid system increases the average life.
owever, the observed variation in lifetime is extremely large. ESR
easurement on the batteries revealed a range from 200 m� to

00 m�, with an average of approximately 324 m� and a standard
eviation of 69 m�. This wide spread in ESR may have a significant

mpact on the lifetime for high current drains.
In an initial experiment, we attempted to predict, from known

haracteristics of the devices, the lifetime in terms of the num-
er of pulse cycles after which the voltage of the battery or
attery–supercapacitor system drops below 1 V. For these experi-
ents, we used ESR, duty ratio, and information as to whether the

evice was a battery or a hybrid as the input to the neural network.

he neural network was configured with 3 input neurons, one for
ach of these characteristics, and a single output neuron indicating
he predicted lifetime. The network performed best with 3 hidden
eurons. Fig. 3 shows the performance of the ANN predicting the

ife of the systems based on known device characteristics only. As
cycles before cut-off voltage and standard deviation, for various devices (left) and

can be clearly seen, the performance of the network is rather poor:
the slope of the correlation of predicted values vs. observed values
is only 0.192, far from indicating a good match, and the correlation
coefficient is below 0.5.

The lifetime of a battery is the result of the ageing processes
ongoing within the battery. The aging processes can be linked to
stress factors. Wenzl et al. [12] describe stress factors as statistical
parameters calculated from a time series of operating conditions.
These parameters link the operating conditions to the observed
lifetime. For the subsequent experiments, we assumed that this
linkage between operating condition and lifetime is expressed by
the discharge curve. That is, rather than trying to infer the rela-
tionship between stress factors and lifetime, we attempted to infer
the relationship between the shape of the discharge curve and the
lifetime. If the discharge curve correctly summarizes this linkage,
then we would be able to predict the lifetime of the battery. Such
prediction is only useful if it can be made based on a relatively short
initial segment of the overall discharge curve.

To predict the lifetime from the initial segment of the discharge
curve, we configured the ANN with input neurons corresponding
to the voltage measured at a given point of the discharge curve. We
sampled the discharge curve every 5 pulse cycles. For example, to
leverage the first 100 pulse cycles of the discharge curve, we set
0                   500               1000               1500               2000

Cycle life (predicted)

Fig. 3. Predicted lifetime based on readily measurable device characteristics (ESR,
duty ratio, hybrid vs. battery) at 2.0 A pulse discharge. The horizontal axis shows the
predicted pulse cycles; the vertical axis shows the actual pulse cycles.
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ig. 4. Prediction results at 2.0 A pulse discharge using different lengths of data: (
hows the length of the initial segment of the discharge curve in percent of the ave

rediction of the lifetime (that is, the number of discharge pulse
ycles before the voltage dropped below the cut-off voltage).

Fig. 4a shows the predictions obtained for the experiment at a
urrent of 2 A, when varying the number of hidden neurons and the
nitial length of the discharge curve. The horizontal axis shows the
nitial length of the discharge curve in terms of the percentage of
he average life. The vertical axis shows the correlation coefficient
f the obtained prediction. The different points for a given initial
ength of the discharge curve result from differently configured
ets (using different numbers of hidden neurons). Not surprisingly,
he prediction improved with the length of the observed discharge
urve. As the length of the initial segment increased, the impact
f the chosen configuration of the net became smaller (showing a
maller spread of the correlation coefficient). Fig. 4b shows only
he best results for each chosen initial segment of the discharge
urve. The predictions were quite good already at very short ini-
ial segments: at less than 2% of the average life, the prediction

howed a correlation coefficient above 0.93. The accuracy improved
apidly and was above 0.95 after 4% of the average life. Above 8% of
he average life, the correlation coefficient exceeded 0.96. In Fig. 5,
e show the predictions at 4% of the average life: the fit between
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ig. 5. Predicted lifetime based on initial segment of the discharge curve of roughly
% of the average lifetime at 2.0 A pulse discharge. Axes are as in Fig. 3.
Initial cycles

h varying number of hidden neurons and (b) best prediction. The horizontal axis
umber of pulse cycles; the vertical axis shows the correlation coefficient.

predicted and observed values is very good, and the slope of the
correlation line is 0.857, sufficiently close to 1. We then compared
the predictions obtained for the experiments at various levels of
discharge current (at 1.5 A, 2.0 A, and 2.5 A; see Fig. 6). We see that
the accuracy of the prediction increased with lower variation in the
samples (see Fig. 2). For example, at 4% initial length the correlation
coefficient obtained for the experiment at 2.5 A current, where the
samples exhibited much less variation, was close to 0.98 (with a
correlation slope of 0.916). In Fig. 7, predictions at 4% of the aver-
age life are shown, demonstrating excellent fit between prediction
and observed result.

Our initial experiment had shown that we were not able to
obtain good predictions from easily measurable device charac-
teristics alone (see Fig. 3). We then conducted an experiment
to determine whether knowledge of these characteristics could
further improve the predictions based only on the initial seg-
ment of the discharge curve. We added input neurons to the
network reflecting these characteristics. Fig. 8 shows the predic-
tions obtained using 4% of the average life at a discharge current of
2.0 A when providing additional knowledge about various aspects
of the device. As can be seen, the information about the ESR had lit-
tle impact on the prediction accuracy. Adding information whether
a device is a battery or a hybrid improved the prediction somewhat.

Knowledge about the duty cycle did improve the prediction more
substantially. Providing any additional information did not fur-
ther improve the prediction. A similar improvement was obtained
when providing information about the ESR jointly with whether
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Fig. 6. Prediction results at 1.5 A, 2.0 A, and 2.5 A pulse discharge (curves from bot-
tom to top). Axes are as in Fig. 4.
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he device was a battery or hybrid. We conclude that while most of

he linkage between stress factors and lifetime is already reflected
n the shape of the discharge curve, there are still aspects of this
inkage that are reflected by device characteristics.

We were further interested in how resilient our method was to
hanges in the operating conditions or makeup of the device. In

0.990

0.985

0.980

0.975

0.970

Initial cycles

R
eg

re
ss

io
n

 c
o

ef
fi

ci
en

t

0.00%      1.00%      2.00%      3.00%       4.00%      5.00%      6.00%

Initial cycles
Initial cycles + device characteristics

ig. 9. Prediction results at 2.0 A from (a) batteries, hybrid devices with 2 F capacitors,
.5 A, 2.0 A, and 2.5 A pulse discharge combined into a single data set. Axes are as in Fig. 4
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evice or mode of operation.
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f the average lifetime at 1.5 A, 2.0 A, and 2.5 A pulse discharge (graphs from left to

the experiment shown in Fig. 9a, we combined data from batter-
ies, hybrid devices with 2 F capacitors, and hybrid devices with 4 F
capacitors. We wanted to see whether predictions could be made
by examining discharge curves from devices with different physi-
cal makeup. Excellent predictions where again obtained, as shown
by the bottom curve. These predictions can be further improved by
adding information as to which device was a hybrid and the capac-
ity of the supercapacitor (see the top curve). The improvement of
the results over the earlier experiment is probably due to having a
much larger data set available to train the ANN and the network
being able to distinguish the physical difference in the devices.
In the experiment shown in Fig. 9b, we combined data obtained
when discharging at 1.5 A, 2.0 A, and 2.5 A current, reflecting differ-
ent usage characteristics. Again we obtained excellent predictions.
The bottom curve shows the prediction based only on the initial
segment of the discharge curve, the top curve shows the predic-
tion when adding information as to which discharge rate was used.
These experiments suggest that our method can accurately predict
the lifetime even when the physical characteristics of the devices
vary or when the usage behavior varies between samples.

Predicting the lifetime of batteries and hybrid systems is essen-

tial for designing and determining their applications. Predictive
methods based on models derived from the internal chemistry of
the devices have not yet been proven. Although it is impossible
to follow the discharge profiles of most batteries and/or hybrid
energy systems in real life, some important information about
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. The bottom graphs show the prediction results based on the initial segment of the
of the discharge curve together with information as to the characteristics of each
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hese systems can be extracted from accelerated life tests such
s high current pulse discharge, which is a common practice for
uality control with many battery manufacturers. However, this
ractice is time and energy consuming, especially for hybrid sys-
ems with even further extended lifetime. Therefore, the reported

ethod of predicting lifetime based on a short initial segment
f pulse cycle data is highly beneficial. To date, there are only a
imited number of studies of the prediction of battery life, and
ven less for battery–supercapacitor hybrid systems. This work
eveloped a method to predict the state-of-charge for energy
torage systems that is applicable to both batteries alone and
attery–supercapacitor hybrids. In follow-on work, we plan to
xtend this approach to state-of-life predictions using secondary
atteries.

. Conclusions

An approach to predict the lifetime of batteries and
attery–supercapacitor hybrid systems using ANNs has been
emonstrated. Our results show that, relying on only a small
raction of the discharge data (less than 4%), the ANN can predict
he state-of-charge of these devices and systems with very good
ccuracy. The key information required to predict the lifetime is
lready captured in the discharge data itself, which reflects both

he physical characteristics of the device as well as the conditions
f operation (e.g., applied current, duty ratio, or whether the
evice was a battery or a hybrid system). ANNs are a powerful
echnique to effectively predict the life and discharge behavior
f energy storage devices and/or systems without requiring a

[

[

[
[

ources 196 (2011) 4061–4066

detailed investigation of the internal chemistries and interference
between the chemistries of these devices.
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